(1)如图,在△ABC中,D、E是BC边上的两点,请你从下面三项中选出两个作为条件,另一个作为结论,写出真

(1)如图,在△ABC中,D、E是BC边上的两点,请你从下面三项中选出两个作为条件,另一个作为结论,写出真命题,并加以证明.①AB=AC,②AD=AE,③BD=CE.(2... (1)如图,在△ABC中,D、E是BC边上的两点,请你从下面三项中选出两个作为条件,另一个作为结论,写出真命题,并加以证明.①AB=AC,②AD=AE,③BD=CE.(2)如图,河流的两岸PQ、MN互相平行,河岸MN上有一排间隔为50米的电线杆C、D、E、…,某人在河岸PQ的A处测得∠CAQ=30°,然后延河岸走了110米到达B处,测得∠DBQ=45°,求河流的宽度(结果可带根号). 展开
 我来答
毁150
推荐于2016-07-01 · TA获得超过156个赞
知道答主
回答量:140
采纳率:71%
帮助的人:58.9万
展开全部
解:(1)解法一:如果AB=AC,AD=AE,那么BD=CE.(1分)
证明:∵AB=AC,∴∠B=∠C,
同理∠ADE=∠AED,
∴180°-∠ADE=180°-∠AED,即∠ADB=∠AEC.(2分)
在△ABD和△ACE中,
∠ADB=∠AEC
∠B=∠C
AB=AC

∴△ABD≌△ACE,∴BD=CE;(3分)
解法二:如果AD=AE,BD=CE,那么AB=AC.(1分)
证明:∵AD=AE,∴∠ADE=∠AED,
∴180°-∠ADE=180°-∠AED,即∠ADB=∠AEC.(2分)
在△ABD和△ACE中,
AD=AE
∠ADB=∠AEC
BD=CE

∴△ABD≌△ACE,∴AB=AC;(3分)
解法三:如果BD=CE,AB=AC,那么AD=AE.(1分)
证明:∵AB=AC,∴∠B=∠C.(2分)
在△ABD和△ACE中
BD=CE
∠B=∠C
AB=AC

∴△ABD≌△ACE,∴AD=AE.(3分)
(此题还有其他的证明方法,不再一一列举,酌情分步给分)

(2)过D作DH∥CA交PQ于H,过D作DG⊥PQ,垂足为G,(4分)
∵PQ∥MN,DH∥CA
∴四边形CAHD是平行四边形.
∴AH=CD=50,∠DHQ=∠CAQ=30°(5分)
在Rt△DBG中,∵∠DBG=∠BDG=45°,
∴BG=DG,设BG=DG=x,
在Rt△DHG中,得HG=
3
x,(6分)
又BH=AB-AH=110-50=60,
∴60+x=
3
x,
∴x=30
3
+30(米).
河流的宽为(30
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×
  • 个人、企业类侵权投诉
  • 违法有害信息,请在下方选择后提交

类别

  • 色情低俗
  • 涉嫌违法犯罪
  • 时政信息不实
  • 垃圾广告
  • 低质灌水

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消