如图,在△ABC中,AD平分∠BAC,点D是BC的中点,DE⊥AB于点E,DF⊥AC于点F.求证:(1)∠B=∠C.(2)△

如图,在△ABC中,AD平分∠BAC,点D是BC的中点,DE⊥AB于点E,DF⊥AC于点F.求证:(1)∠B=∠C.(2)△ABC是等腰三角形.... 如图,在△ABC中,AD平分∠BAC,点D是BC的中点,DE⊥AB于点E,DF⊥AC于点F.求证:(1)∠B=∠C.(2)△ABC是等腰三角形. 展开
 我来答
遥忆初见时1187
2014-11-01 · TA获得超过201个赞
知道答主
回答量:127
采纳率:0%
帮助的人:163万
展开全部
解答:证明:(1)∵AD平分∠BAC,DE⊥AB于点E,DF⊥AC于点F,
∴DE=DF,
在Rt△BDE和Rt△CDF中,
BD=CD
DE=DF

∴Rt△BDE≌Rt△CDF(HF),
∴∠B=∠C;
(2)由(1)可得∠B=∠C,
∴△ABC为等腰三角形.
本回答被提问者采纳
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式