如下:
等比级数若收敛,则其公比q的绝对值必小于1。
故当n趋向于无穷时,等比数列求和公式中q的n次方趋于0(|q|<1),此时Sn=a1/(1-q)。
q大于1时等比级数发散。
性质
①若 m、n、p、q∈N,且m+n=p+q,则aman=apaq;
②在等比数列中,依次每 k项之和仍成等比数列;
③若m、n、q∈N,且m+n=2q,则am×an=(aq)2;
④ 若G是a、b的等比中项,则G2=ab(G ≠ 0);
⑤在等比数列中,首项a1与公比q都不为零;
⑥在数列{an}中每隔k(k∈N*)取出一项,按原来顺序排列,所得新数列仍为等比数列且公比为q(k+1)。