拉格朗日中值定理证明内容是什么?
1个回答
展开全部
中值定理是微积分学中的基本定理,由四部分组成。内容是说一段连续光滑曲线中必然有一点,它的斜率与整段曲线平均斜率相同。中值定理又称为微分学基本定理,拉格朗日定理,拉格朗日中值定理,以及有限改变量定理等。
如果函数f(x)满足:
1、在闭区间[a,b]上连续;
2、在开区间(a,b)内可导,那么在开区间(a,b)内至少有一点,使等式成立。
简介:
柯西中值定理是拉格朗日中值定理的推广,是微分学的基本定理之一。其几何意义为,用参数方程表示的曲线上至少有一点,它的切线平行于两端点所在的弦。该定理可以视作在参数方程下拉格朗日中值定理的表达形式。
积分中值定理,是一种数学定律。分为积分第一中值定理和积分第二中值定理,它们各包含两个公式。其中,积分第二中值定理还包含三个常用的推论。这个定理的几何意义为:若f(x)≥0,x∈[a,b],则由x轴、x=a、x=b及曲线y=f(x)围成的曲边梯形的面积等于一个长为b-a,宽为f(ξ)的矩形的面积。
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询