cotx的平方的不定积分是什么?
展开全部
cotx的平方的不定积分是 -cotx -x +C。
解:
∫(cotx)^2dx
=∫(cosx)^2 / (sinx)^2 dx
=∫ [1-(sinx)^2]/(sinx)^2 dx
=∫ 1/(sinx)^2 -1 dx
= -cotx -x +C
所以cotx的平方的不定积分是 -cotx -x +C。
对于一个定义在某区间的已知函数f(x),如果存在可导函数F(x),使得在该区间内的任一点都存在dF(x)=f(x)dx,则在该区间内就称函数F(x)为函数f(x)的原函数。
不定积分的公式:
1、∫adx=ax+C,a和C都是常数
2、∫x^adx=[x^(a+1)]/(a+1)+C,其中a为常数且a≠-1
3、∫1/xdx=ln|x|+C
4、∫a^xdx=(1/lna)a^x+C,其中a>0且a≠1
5、∫e^xdx=e^x+C
6、∫cosxdx=sinx+C
7、∫sinxdx=-cosx+C
8、∫cotxdx=ln|sinx|+C=-ln|cscx|+C
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询
广告 您可能关注的内容 |