7个常用麦克劳林公式是什么?
7个常用麦克劳林公式是:
1、sinx=x-x^3/3!+x^5/5!-…+(-1)^nx^(2n+1)/(2n+1)!+0^(x^(2n+2))
2、cosx=1-x^2/2!+x^4/4!-x^6/6!+…+(-1)^nx^2n/(2n)!+0^(x^2n)
3、ln(1+x)=x-x^2/2+x^3/3-…+(-1)^nx^(n+1)/(n+1)+0(x^(n+1))
4、1/(1-x)=1+x+x^2+…+x^n+0(x^n)
5、(1+x)^m=1+mx+m(m-1)/2!x^2+…+m(m-1)…(m-n-+1)x^n/n!+0(x^n)
6、e^x=1+x+x^2/2!+…x^n/n!+e^θx·x^(n+1)/(n+1)!
7、1/(1+x)=1+x+x^2+x^3+…+x^n(x∈(-1,1))
麦克劳林简介
在麦克劳林公式中,误差|R𝗻(x)|是当x→0时比xⁿ高阶的无穷小。
若函数f(x)在开区间(a,b)有直到n+1阶的导数,则当函数在此区间内时,可以展开为一个关于x多项式和一个余项的和。他在代数学中的主要贡献是在《代数论》(1748,遗著)中,创立了用行列式的方法求解多个未知数联立线性方程组。但书中记叙法不太好,后来由另一位数学家Cramer又重新发现了这个法则,所以被称为Cramer法则。