常数减去无穷小是什么
1个回答
展开全部
还是无穷小。
无穷加减常数因无穷大或无穷小而异。因为无穷大加或者减常数=无穷大,如:正(或负)无穷大加(或减)3还等于正(或负)无穷大 无穷小加常数等于那个常数,如:0+3=3; 无穷小减常数等于常数的相反数,如:0-3=-3。设函数f(x)在x0的某一去心邻域内有定义(或|x|大于某一正数时有定义)。如果对于任意给定的正数M(无论它多么大),总存在正数δ(或正数X)。只要x适合不等式0<|x-x0|<δ(或|x|>X,即x趋于无穷),对应的函数值f(x)总满足不等式|f(x)|>M,则称函数f(x)为当x→x0(或x→∞)时的无穷大。
在自变量的同一变化过程中,无穷大与无穷小具有倒数关系,即当x→a时f(x)为无穷大,则1/f(x)为无穷小;反之,f(x)为无穷小,且f(x)在a的某一去心邻域内恒不为0时,1/f(x)才为无穷大。
扩展资料:
当自变量x无限接近x0(或x的绝对值无限增大)时,函数值f(x)与0无限接近,即f(x)→0(或f(x)=0),则称f(x)为当x→x0(或x→∞)时的无穷小量。特别要指出的是,切不可把很小的数与无穷小量混为一谈。把这些实数写成二进制,小数点后第n位为1,对应于n在子集中;为0则对应不在子集中。这样[0,1)上的实数就和正整数的子集有了一一对应,因此实数和正整数集的所有子集的个数一样多。也可以证明前面所说曲线可以和实数集的幂集有一一对应关系。所有子集的个数又将比这个集合大。这个过程可以一直进行下去,得到越来越大的无穷大
无穷加减常数因无穷大或无穷小而异。因为无穷大加或者减常数=无穷大,如:正(或负)无穷大加(或减)3还等于正(或负)无穷大 无穷小加常数等于那个常数,如:0+3=3; 无穷小减常数等于常数的相反数,如:0-3=-3。设函数f(x)在x0的某一去心邻域内有定义(或|x|大于某一正数时有定义)。如果对于任意给定的正数M(无论它多么大),总存在正数δ(或正数X)。只要x适合不等式0<|x-x0|<δ(或|x|>X,即x趋于无穷),对应的函数值f(x)总满足不等式|f(x)|>M,则称函数f(x)为当x→x0(或x→∞)时的无穷大。
在自变量的同一变化过程中,无穷大与无穷小具有倒数关系,即当x→a时f(x)为无穷大,则1/f(x)为无穷小;反之,f(x)为无穷小,且f(x)在a的某一去心邻域内恒不为0时,1/f(x)才为无穷大。
扩展资料:
当自变量x无限接近x0(或x的绝对值无限增大)时,函数值f(x)与0无限接近,即f(x)→0(或f(x)=0),则称f(x)为当x→x0(或x→∞)时的无穷小量。特别要指出的是,切不可把很小的数与无穷小量混为一谈。把这些实数写成二进制,小数点后第n位为1,对应于n在子集中;为0则对应不在子集中。这样[0,1)上的实数就和正整数的子集有了一一对应,因此实数和正整数集的所有子集的个数一样多。也可以证明前面所说曲线可以和实数集的幂集有一一对应关系。所有子集的个数又将比这个集合大。这个过程可以一直进行下去,得到越来越大的无穷大
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询