数学导数证明 如果f(x)是偶函数,且f'(0)存在,证明f'(0)=0 我来答 2个回答 #热议# 什么是淋病?哪些行为会感染淋病? 茹翊神谕者 2023-08-20 · TA获得超过2.5万个赞 知道大有可为答主 回答量:3.6万 采纳率:76% 帮助的人:1610万 我也去答题访问个人页 关注 展开全部 简单分析一下,答案如图所示 已赞过 已踩过< 你对这个回答的评价是? 评论 收起 舒适还明净的海鸥i 2022-06-29 · TA获得超过1.7万个赞 知道小有建树答主 回答量:380 采纳率:0% 帮助的人:69.8万 我也去答题访问个人页 关注 展开全部 f'(0)=lim[f(x)-f(0)]/(x-0) (x->0 )存在.该极限存在,则左右存在且相等,即,x->0+时与x->0-时都存在且相等.f'(0+)=lim[f(x)-f(0)]/x=k 这里的x->0+ f'(0-)=lim[f(x)-f(0)]/x 这行x->0-利用偶函数f'(0-)=lim[f(-x)-f(... 已赞过 已踩过< 你对这个回答的评价是? 评论 收起 推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询 广告您可能关注的内容2024精选数学公式汇总_【完整版】.docwww.163doc.com查看更多 其他类似问题 2020-02-06 如果f(x)为偶函数,且f(0)的导数存在,证明f(x)在x=0处的导数=0 4 2022-05-15 证明导数为0 如果f(x)为偶函数,且f'(0)存在,证明f'(0)=0 2022-10-18 如果f(x)为偶函数,且存在,用导数定义证明f'(0)=0? 2022-05-21 如果f(x)为偶函数,且存在,用导数定义证明f'(0)=0 2022-06-10 一个高数问题 如果f(x)是偶函数,且f'(0)(f(x)在0点的导数)存在,证明f'(0)=0 2022-06-07 如果f(x)为偶函数,且f(0)的导数存在,证明f(x)在x=0处的导数=0 2022-06-04 若f(x)是偶函数且f'(0)(f(0)的导数)存在,证明:f'(0)=0. 2022-10-10 若F(0)是偶函数,且F(0)的导数存在.证明:F(0)的导数是0? 为你推荐: