极限,导数与微分的区别

 我来答
新科技17
2022-07-01 · TA获得超过5902个赞
知道小有建树答主
回答量:355
采纳率:100%
帮助的人:74.8万
展开全部
导数是针对函数而言的,而且必须是连续函数(也可以是分段函数),也就是说只有函数才有导数的感念,一阶导数在此时是函数的斜率.从上面的分析,如果是常熟函数,其导数就是0
而极限是指一个有序数列(有穷或者无穷)或者函数在自变量无限趋近于某一点时函数的值.
积分和微分区别和联系:
按几何讲:
曲线某点的导数就是该点切线的斜率,不指定某点就是斜率与x的关系式;
微分就是在某点处用切线的直线方程近似曲线方程的取值,不指定某点就是所有点满足的关系式;
定积分就是求曲线与x轴所夹的面积;
不定积分就是该面积满足的方程式.
按代数讲:
微分就是求导的过程,积分就是逆向求导
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式