组合数:1+ C(n,1) + C(n,2) + ...+ C(n,n) = (1+1)^n = 2^n 这个式子如何推导? 我来答 1个回答 #热议# 应届生在签三方时要注意什么? 舒适还明净的海鸥i 2022-06-04 · TA获得超过1.7万个赞 知道小有建树答主 回答量:380 采纳率:0% 帮助的人:70.1万 我也去答题访问个人页 关注 展开全部 由二项式定理可证: (a+b)^n=C(n,0)a^n+C(n,1)a^(n-1)*b+C(n,2)a^(n-2)*b^2+...+C(n,n)b^n 代入a=1、b=1即得2^n=1+ C(n,1) + C(n,2) + ...+ C(n,n) = (1+1)^n,左右翻转一下就是上面的式子. 已赞过 已踩过< 你对这个回答的评价是? 评论 收起 推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询 为你推荐: