立体几何是数学的难点,空间思维薄弱的学生该如何学好高中数学立体几何?
方法:要建立空间观念,提升空间想像力。从了解平面图形到认识立体图形是一次飞越,要有一个全过程。有的同学们自做一些空间几何模型并不断观查,这有利于建立空间观念,是个好方法。有的同学们有时间就对一些立体图形开展观查、揣测,而且分辨在其中的线线、面线、全方面位置关系,探寻各种各样角、各种垂直线作法,这针对建立空间观念也是好方法。
根据结合实际、观查实体模型或对比平面几何的结果来明确提出出题;针对明确提出的出题,不必随便毫无疑问或否认它,要常用好多个充分必要条件开展检测,最好是保证否认列举背面事例,毫无疑问得出证实。欧拉公式的内容是以研究性课题的方式提供的,要从这当中感受造就数学思想方法。
所说结构型,就是指从总体到部分、从高层住宅到矮层来了解、机构学过专业知识,并领悟在其中暗含的观念、方式。所说专业化,就是指将类似问题如平行面的问题、竖直的问题、角的问题、间距的问题、惟一性的问题集中化下去,较为他们的不同点,产生对他们的总体了解。要特别注意累积解决困难的对策。如将高中立体几何问题转换为平面图问题,又如将求点至平面图间距的问题,或转换以求平行线到平面图间距的问题,再进而转换以求点至平面图间距的问题;或转换为容积的问题。
平行线和平面图这种具体内容,是高中立体几何的基本,学精这一部分的一个近道便是努力学习定律的证实,尤其是一些很核心的定律的证实。例如:三垂线定理。定律的内容都非常简单,便是线与线,线与面,面与面相互关系的论述。但定律的证件在出学的过程中一般都很繁杂,乃至很抽象化。