求和Sn=1^2+3^2+5^2+7^2+…+(2n-1)^2

 我来答
大仙1718
2022-07-04 · TA获得超过1281个赞
知道小有建树答主
回答量:171
采纳率:98%
帮助的人:62.7万
展开全部
1^2+2^2+3^3+...+n^2=n(n+1)(2n+1)/6
(2n)^2-(2n-1)^2=4n-1
2^2+4^2+6^2+.(2n)^2-[1^2+3^2+5^2+.(2n-1)^2]
=4(1+2+3+...+n)-n
=2n(n+1)-n=n(2n+1)
2[1^2+3^2+.+(2n-1)^2]+n(2n+1)=2n(2n+1)(4n+1)/6
1^2+3^2+5^2+.+(2n-1)^2=n(2n-1)(2n+1)/3
(这个题很好,我推导出来很高兴,验证成立
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式