ABC三事件不都发生,和ABC同时都发生是对立事件。

 我来答
放肆旳青春时代
2022-09-10 · TA获得超过3014个赞
知道答主
回答量:33
采纳率:0%
帮助的人:3.6万
展开全部

ABC三个事件不都发生,和ABC同时都发生是对立事件

ABC三个事件同时发生为 P(ABC),所以ABC三事件不都同时发生为 1-P(ABC)。

扩展资料

概率论是研究随机现象数量规律的数学分支。随机现象是相对于决定性现象而言的。在一定条件下必然发生某一结果的现象称为决定性现象。

定理1

互补法则。与A互补事件的概率始终是1-P(A)。

定理2

不可能事件的概率为零。

定理3

如果A1...An事件不能同时发生(为互斥事件),而且若干事件A1,A2,...An∈S每两两之间是空集关系,那么这些所有事件集合的概率等于单个事件的概率的和。

定理4

如果事件A,B是差集关系,则有 

定理5

任意事件加法法则:

对于事件空间S中的任意两个事件A和B,有如下定理: 概率

定理6

乘法法则:

事件A,B同时发生的概率是:  

前提为事件A,B有一定关联。

定理7

无关事件乘法法则:

两个不相关联的事件A,B同时发生的概率是:注意到这个定理实际上是定理6(乘法法则)的特殊情况,如果事件A,B没有联系,则有P(A|B)=P(A),以及P(B|A)=P(B)。

观察一下轮盘游戏中两次连续的旋转过程,P(A)代表第一次出现红色的概率,P(B)代表第二次出现红色的概率,可以看出,A与B没有关联,利用上面提到的公式,连续两次出现红色的概率为: 

忽视这一定理是造成许多玩家失败的根源,普遍认为,经过连续出现若干次红色后,黑色出现的概率会越来越大,事实上两种颜色每次出现的概率是相等的,之前出现的红色与之后出现的黑色之间没有任何联系,因为球本身并没有"记忆",它并不"知道"以前都发生了什么。

所以,连续10次至少有1次出现红色的概率为  。

参考资料:百度百科——概率论



已赞过 已踩过<
你对这个回答的评价是?
评论 收起
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式