小学四年级数学小论文怎么写?
怎么写?
要求自己写的,谢绝转发。
老师只说了可以200字的,可还没有说是什么主题。
第一次写论文,请求帮助! 展开
连乘的简便运算
今天,我做完作业,打开妈妈让我做的一册练习本。一翻开要做的那一页,就看见许多简便运算题。看到一题是这么写的:25×125×32。我看了看,回忆起老师讲过的方法:25和125无论哪一个乘32都不好算,而且把这两个数拆开来和32去乘也不是很好算,这样做肯定不对的,那只能把32拆开来,拆成什么呢?我想:老师教过,25×4=100,125×8=1000,这样算起来最好算,而且32也是由4乘8得过来的,所以只要把32拆开来,变成25×125×(4×8),然后再把小括号去掉,把数字换一下位置,就成了(25×4)×(125×8),这样就好算多了,25×4=100,125×8=1000,100×1000=100000,这应该就是这题的简便方法了。看来学习数学必须深入思考啊。
巧用高斯定律
在这个星期天,我过得很快乐,因为我学会了用高斯定律。
这天,妈妈看我整天在看电视,就出了一道题给我:0.1+0.4+0.7+„„+3.7+4,还告诉我,不能用计算器,而且要用简便方法。这不是刁难人吗,我发起了牢骚。妈妈提醒到,你可以参考数学书32页的高斯定律。我一看,从1加到100,真难呢,不过我发现了规律:1、头加尾的和,乘以所有个数的一半,最后是正确答案,就是:(1+100) ×(100÷2)。2、头加倒数第二个数正好等于最后一个数时,可以把它们加起来乘所有个数的一半,最后加上中间的数,也是正确答案,就是:(1+99) ×50+50。依照这些结论,我把妈妈出的那道题的头和尾,即0.1和0.4加起来,再乘以个数的一半14÷2,最后答案是28.7。
那天,妈妈奖励我去看书。
装灯问题
那天,徐老师叫我们做数学书的122页,我翻开来先看了看,目光停留在第四题上。第四题的题目是这样的:圆形滑冰场的一周全长是150米。如果沿着这一圈每隔15米安装一盏灯,一共需装几盏灯?我想:圆形应该怎样求出段数呢?因为徐老师在教这些内容,特地给了我们一句口诀,叫做:封闭路线求段数。只要求出段数,就可以求出东西的数量了。我在草稿纸上画了一个圆形,先求出了大概可以装10盏灯,然后再在圆形的边上画了10个小圆圈,一数,正好有10个间隔。我这才知道,原来圆形中盏数和间隔是一样的。最后,我就列了一步算式:150÷15=10(盏)。
后来,徐老师在上课的时候讲到:“在做这种圆形路线的题目时,可以在一盏灯的旁边剪一刀,再把它拉直,就是一条直线了。因为是末尾端没装灯,所以每一盏灯对应的就是后面一段路,因此盏数和间隔才会相同。”我恍然大悟。
年龄问题
今天,我在做题时被一道应用题给难住了。这道题的题目是:小华今年3岁,今年爸爸26岁,几年后爸爸的年龄是小华的3倍?我百思不得其解。
后来妈妈回来了,我就请教妈妈。妈妈帮我分析:根据这个题目的条件可知,今年爸爸和小华的“年龄差”是26-4=24(岁)。再根据“爸爸的年龄是小华的3倍”这一关系,画张图试试。我们俩就开始画了起来。
画了图之后,我马上明白过来了:他们俩过了几年后,“年龄差”还是24岁。再根据差倍问题的解法求出几年后小华的年龄,用几年后小华的年龄减去2岁,就可以求出中间经过了几年了。
解是:26-2=24(岁)
24÷(3-1)=12(岁)
12-2=10(年)
答:10年后爸爸的年龄是小华的3倍。
妈妈又让我验算一下,10年后爸爸的年龄是不是小华的3倍。
(26+10)÷(2+10)=36÷12=3
耶!我答对了。看来做题先得画图,画了图就能就一目了然了。
在日常学习中,往往有许多数学题目的答案是多个的,容易在练习或考试中被忽略,这就需要我们认真审题,唤醒生活经验,仔细推敲,全面正确理解题意.否则就容易忽略了另外的答案,犯以偏概全的错误.
一篇优秀的数学小论文的诞生,对于它的创作者来说都是一次创造性的劳动,其创作的素材、水平,乃至创作的灵感……绝不是轻易可以得到的,它们需要作者在自己的学习与生活实践中,去进行长期的积累与思考。创造性的劳动对创作者的要求很高。有的是在平时十分注意对课本知识进行归纳整理、拓展延伸,学习中有许多意想不到的收获;有的是从课外阅读中得到收获与启发后,获得灵感、得以选题;……更有甚者是,有的作者在生活中发现问题注意观察、探究,并与自己的数学学习相联系,对观察、探究的结果进行思考、归纳、总结,升华为理论,写出了令人叫绝的好论文。综观获奖论文的小作者们,他们大多是数学学习的有心人。好论文的作者不仅要有较好的数学感悟,还要有良好的文学修养、综合素养。