求解数学题!!!
已知:a2/3+b2/3=4x=a+3a1/3×b2/3y=b+3a2/3×b1/3求:(x+y)2/3-(x-y)2/3=?题里的1/3和2/3都是前面字母的指数这里打...
已知:
a2/3+b2/3=4
x=a+3a1/3×b2/3
y=b+3a2/3×b1/3
求:(x+y)2/3-(x-y)2/3=?
题里的1/3和2/3都是前面字母的指数 这里打不出来上标
感谢各位高手哦 展开
a2/3+b2/3=4
x=a+3a1/3×b2/3
y=b+3a2/3×b1/3
求:(x+y)2/3-(x-y)2/3=?
题里的1/3和2/3都是前面字母的指数 这里打不出来上标
感谢各位高手哦 展开
4个回答
展开全部
(x+y)^(2/3)-(x-y)^(2/3),是不是(x+y)^(2/3)+(x-y)^(2/3)?
如果是加,可以做
x+y=a+b+3a^(1/3)b^(2/3)+a^(2/3)b^(1/3)
=[a^(1/3)]^3+[b^(1/3)]^3+3a^(1/3)b^(2/3)+3a^(2/3)b^(1/3)
=[a^(1/3)+b^(1/3)][a^(2/3)-a^(1/3)b^(1/3)+b^(2/3)]+3a^(1/3)b^(1/3)[a^(1/3)+b^(1/3)]
=[a^(1/3)+b^(1/3)][a^(2/3)-a^(1/3)b^(1/3)+b^(2/3)+3a^(1/3)b^(1/3)]
=[a^(1/3)+b^(1/3)][a^(2/3)+2a^(1/3)b^(1/3)+b^(2/3)]
=[a^(1/3)+b^(1/3)]^3
x-y=a-b+3a^(1/3)b^(2/3)-a^(2/3)b^(1/3)
=[a^(1/3)]^3-[b^(1/3)]^3+3a^(1/3)b^(2/3)-3a^(2/3)b^(1/3)
=[a^(1/3)-b^(1/3)][a^(2/3)+a^(1/3)b^(1/3)+b^(2/3)]-3a^(1/3)b^(1/3)[a^(1/3)-b^(1/3)]
=[a^(1/3)-b^(1/3)][a^(2/3)+a^(1/3)b^(1/3)+b^(2/3)-3a^(1/3)b^(1/3)]
=[a^(1/3)-b^(1/3)][a^(2/3)-2a^(1/3)b^(1/3)+b^(2/3)]
=[a^(1/3)-b^(1/3)]^3
所以(x+y)^(1/3)=a^(1/3)+b^(1/3)
(x-y)^(1/3)=a^(1/3)-b^(1/3)
令m=a^(1/3),n=b^(1/3)
则(x+y)^(2/3)+(x-y)^(2/3)
=(m+n)^2+(m-n)^2
=2(m^2+n^2)
=2[a^(2/3)+b^(2/3)]
=2*4
=8
如果是加,可以做
x+y=a+b+3a^(1/3)b^(2/3)+a^(2/3)b^(1/3)
=[a^(1/3)]^3+[b^(1/3)]^3+3a^(1/3)b^(2/3)+3a^(2/3)b^(1/3)
=[a^(1/3)+b^(1/3)][a^(2/3)-a^(1/3)b^(1/3)+b^(2/3)]+3a^(1/3)b^(1/3)[a^(1/3)+b^(1/3)]
=[a^(1/3)+b^(1/3)][a^(2/3)-a^(1/3)b^(1/3)+b^(2/3)+3a^(1/3)b^(1/3)]
=[a^(1/3)+b^(1/3)][a^(2/3)+2a^(1/3)b^(1/3)+b^(2/3)]
=[a^(1/3)+b^(1/3)]^3
x-y=a-b+3a^(1/3)b^(2/3)-a^(2/3)b^(1/3)
=[a^(1/3)]^3-[b^(1/3)]^3+3a^(1/3)b^(2/3)-3a^(2/3)b^(1/3)
=[a^(1/3)-b^(1/3)][a^(2/3)+a^(1/3)b^(1/3)+b^(2/3)]-3a^(1/3)b^(1/3)[a^(1/3)-b^(1/3)]
=[a^(1/3)-b^(1/3)][a^(2/3)+a^(1/3)b^(1/3)+b^(2/3)-3a^(1/3)b^(1/3)]
=[a^(1/3)-b^(1/3)][a^(2/3)-2a^(1/3)b^(1/3)+b^(2/3)]
=[a^(1/3)-b^(1/3)]^3
所以(x+y)^(1/3)=a^(1/3)+b^(1/3)
(x-y)^(1/3)=a^(1/3)-b^(1/3)
令m=a^(1/3),n=b^(1/3)
则(x+y)^(2/3)+(x-y)^(2/3)
=(m+n)^2+(m-n)^2
=2(m^2+n^2)
=2[a^(2/3)+b^(2/3)]
=2*4
=8
展开全部
设:m=a^1/3, n=b^1/3
则:
m^2+n^2 = 4
而由:
x=m^3+3mn^2
y=n^3+3nm^2
可得
x+y=(m+n)^3
x-y=(m-n)^3
所以
(x+y)2/3-(x-y)2/3={(m+n)^3}^2/3 - {(m-n)^3}^2/3
= (m+n)^2-(m-n)^2
= 4mn = 4(ab)^1/3
无解,错题。
最后如果是两式相加,(m+n)^2+(m-n)^2的话有解,= 2(m^2+n^2)=8
P.S.:已知x^2+y^2 ,欲求xy的值, 是不可能的。
则:
m^2+n^2 = 4
而由:
x=m^3+3mn^2
y=n^3+3nm^2
可得
x+y=(m+n)^3
x-y=(m-n)^3
所以
(x+y)2/3-(x-y)2/3={(m+n)^3}^2/3 - {(m-n)^3}^2/3
= (m+n)^2-(m-n)^2
= 4mn = 4(ab)^1/3
无解,错题。
最后如果是两式相加,(m+n)^2+(m-n)^2的话有解,= 2(m^2+n^2)=8
P.S.:已知x^2+y^2 ,欲求xy的值, 是不可能的。
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
展开全部
x+y=a+b+3a^(1/3)b^(2/3)+a^(2/3)b^(1/3)
=[a^(1/3)]^3+[b^(1/3)]^3+3a^(1/3)b^(2/3)+3a^(2/3)b^(1/3)
=[a^(1/3)+b^(1/3)][a^(2/3)-a^(1/3)b^(1/3)+b^(2/3)]+3a^(1/3)b^(1/3)[a^(1/3)+b^(1/3)]
=[a^(1/3)+b^(1/3)][a^(2/3)-a^(1/3)b^(1/3)+b^(2/3)+3a^(1/3)b^(1/3)]
=[a^(1/3)+b^(1/3)][a^(2/3)+2a^(1/3)b^(1/3)+b^(2/3)]
=[a^(1/3)+b^(1/3)]^3
x-y=a-b+3a^(1/3)b^(2/3)-a^(2/3)b^(1/3)
=[a^(1/3)]^3-[b^(1/3)]^3+3a^(1/3)b^(2/3)-3a^(2/3)b^(1/3)
=[a^(1/3)-b^(1/3)][a^(2/3)+a^(1/3)b^(1/3)+b^(2/3)]-3a^(1/3)b^(1/3)[a^(1/3)-b^(1/3)]
=[a^(1/3)-b^(1/3)][a^(2/3)+a^(1/3)b^(1/3)+b^(2/3)-3a^(1/3)b^(1/3)]
=[a^(1/3)-b^(1/3)][a^(2/3)-2a^(1/3)b^(1/3)+b^(2/3)]
=[a^(1/3)-b^(1/3)]^3
所以(x+y)^(1/3)=a^(1/3)+b^(1/3)
(x-y)^(1/3)=a^(1/3)-b^(1/3)
令m=a^(1/3),n=b^(1/3)
则(x+y)^(2/3)+(x-y)^(2/3)
=(m+n)^2+(m-n)^2
=2(m^2+n^2)
=2[a^(2/3)+b^(2/3)]
=2*4
=8
=[a^(1/3)]^3+[b^(1/3)]^3+3a^(1/3)b^(2/3)+3a^(2/3)b^(1/3)
=[a^(1/3)+b^(1/3)][a^(2/3)-a^(1/3)b^(1/3)+b^(2/3)]+3a^(1/3)b^(1/3)[a^(1/3)+b^(1/3)]
=[a^(1/3)+b^(1/3)][a^(2/3)-a^(1/3)b^(1/3)+b^(2/3)+3a^(1/3)b^(1/3)]
=[a^(1/3)+b^(1/3)][a^(2/3)+2a^(1/3)b^(1/3)+b^(2/3)]
=[a^(1/3)+b^(1/3)]^3
x-y=a-b+3a^(1/3)b^(2/3)-a^(2/3)b^(1/3)
=[a^(1/3)]^3-[b^(1/3)]^3+3a^(1/3)b^(2/3)-3a^(2/3)b^(1/3)
=[a^(1/3)-b^(1/3)][a^(2/3)+a^(1/3)b^(1/3)+b^(2/3)]-3a^(1/3)b^(1/3)[a^(1/3)-b^(1/3)]
=[a^(1/3)-b^(1/3)][a^(2/3)+a^(1/3)b^(1/3)+b^(2/3)-3a^(1/3)b^(1/3)]
=[a^(1/3)-b^(1/3)][a^(2/3)-2a^(1/3)b^(1/3)+b^(2/3)]
=[a^(1/3)-b^(1/3)]^3
所以(x+y)^(1/3)=a^(1/3)+b^(1/3)
(x-y)^(1/3)=a^(1/3)-b^(1/3)
令m=a^(1/3),n=b^(1/3)
则(x+y)^(2/3)+(x-y)^(2/3)
=(m+n)^2+(m-n)^2
=2(m^2+n^2)
=2[a^(2/3)+b^(2/3)]
=2*4
=8
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询