13,1,0,-5,7,5,-4这组数据的极差是多少?
极差的定义:极差又称范围误差或全距,以R表示,是用来表示统计资料中其最大值与最小值之间的差距,即最大值减最小值后所得之数据。
该题中最大值为13,最小值为-5,所以极差为13-(-5)=18。
扩展资料
极差的应用:
极差只指明了测定值的最大离散范围,而未能利用全部测量值的信息,不能细致地反映测量值彼此相符合的程度,极差是总体标准偏差的有偏估计值,当乘以校正系数之后,可以作为总体标准偏差的无偏估计值。
在统计中常用极差来刻画一组数据的离散程度,以及反映的是变量分布的变异范围和离散幅度,在总体中任何两个单位的标准值之差都不能超过极差。同时,它能体现一组数据波动的范围。极差越大,离散程度越大,反之,离散程度越小。
极差的优点是计算简单,含义直观,运用方便,故在数据统计处理中仍有着相当广泛的应用。 但是,它仅仅取决于两个极端值的水平,不能反映其间的变量分布情况,同时易受极端值的影响。
参考资料:百度百科-极差
18。
计算过程如下:
1、极差就是最大数减最小数;
2、本组数据最大数为13;
3、本组数据最小数为-5;
4、13-(-5)=13+5=18;
5、所以,这组数据的极差是15。
极差是标志值变动的最大范围,它是测定标志变动的最简单的指标。移动极差(Moving Range)是其中的一种。极差不能用作比较,单位不同 ,方差能用作比较, 因为都是个比率。
极差计算公式:
最直接也是最简单的方法,即最大值-最小值(也就是极差)来评价一组数据的离散度。这一方法在日常生活中最为常见,比如比赛中去掉最高最低分就是极差的具体应用。极差=最大标志值—最小标志值 :R=xmax-xmin。
扩展资料:
极差的应用:
在统计中常用极差来刻画一组数据的离散程度,以及反映的是变量分布的变异范围和离散幅度,在总体中任何两个单位的标准值之差都不能超过极差。同时,它能体现一组数据波动的范围。极差越大,离散程度越大,反之,离散程度越小。
极差只指明了测定值的最大离散范围,而未能利用全部测量值的信息,不能细致地反映测量值彼此相符合的程度,极差是总体标准偏差的有偏估计值,当乘以校正系数之后,可以作为总体标准偏差的无偏估计值,它的优点是计算简单,含义直观,运用方便,故在数据统计处理中仍有着相当广泛的应用。 但是,它仅仅取决于两个极端值的水平,不能反映其间的变量分布情况,同时易受极端值的影响。
13-(-5)=13+5=18