求∫sinx/(1+sinx)dx的不定积分
1个回答
展开全部
答:
原式
=∫(1+sinx-1)/(1+sinx)dx
=∫1-1/(1+sinx)dx
=∫1-1/(1+cos(x-π/2))dx
由cos2t=2(cost)^2-1可得:
=∫1-1/(1+2[cos(x/2-π/4)]^2-1)dx
=∫1-1/2cos(x/2-π/4)^2 dx
=x-tan(x/2-π/4)+C
化简得:
=x+cosx/(1+sinx)+C
原式
=∫(1+sinx-1)/(1+sinx)dx
=∫1-1/(1+sinx)dx
=∫1-1/(1+cos(x-π/2))dx
由cos2t=2(cost)^2-1可得:
=∫1-1/(1+2[cos(x/2-π/4)]^2-1)dx
=∫1-1/2cos(x/2-π/4)^2 dx
=x-tan(x/2-π/4)+C
化简得:
=x+cosx/(1+sinx)+C
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
大雅新科技有限公司
2024-11-19 广告
2024-11-19 广告
这方面更多更全面的信息其实可以找下大雅新。深圳市大雅新科技有限公司从事KVM延长器,DVI延长器,USB延长器,键盘鼠标延长器,双绞线视频传输器,VGA视频双绞线传输器,VGA延长器,VGA视频延长器,DVI KVM 切换器等,优质供应商,...
点击进入详情页
本回答由大雅新科技有限公司提供
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询