如图在三角形abc中,ad垂直bc于点d,ce垂直于ab于点e…
展开全部
亲,这个用全等来做就好.
证明:∵∠AHE=∠DHC,∠EAH+∠AHE=90度
∠DHC+∠HCD=90度
∴∠EAH=∠HCD
∵CE垂直AB,∴∠BEH=∠AEH
在△AEH与△BEC中
∵∠EAH=∠HCD,
∠BEH=∠AEH
EH=EB,
∴△AEH≌△CEB(AAS),
∴CE=AE=4
∵CH=CE-EH
∴CH=4-3=1
虽然图画的不像,但是确实是全等哦~
是否可以解决您的问题?
证明:∵∠AHE=∠DHC,∠EAH+∠AHE=90度
∠DHC+∠HCD=90度
∴∠EAH=∠HCD
∵CE垂直AB,∴∠BEH=∠AEH
在△AEH与△BEC中
∵∠EAH=∠HCD,
∠BEH=∠AEH
EH=EB,
∴△AEH≌△CEB(AAS),
∴CE=AE=4
∵CH=CE-EH
∴CH=4-3=1
虽然图画的不像,但是确实是全等哦~
是否可以解决您的问题?
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询