求定积分的问题
1个回答
展开全部
let
f(x)=x^3/(cosx)^2
f(-x)=-f(x)
=>∫(-π/4->π/4) x^3/(cosx)^2 dx =0
//
∫(-π/4->π/4) (1+x^3)/(cosx)^2 dx
=∫(-π/4->π/4) dx/(cosx)^2 +∫(-π/4->π/4) x^3/(cosx)^2 dx
=∫(-π/4->π/4) dx/(cosx)^2
=∫(-π/4->π/4) (secx)^2 dx
=[tanx]|(-π/4->π/4)
=2
f(x)=x^3/(cosx)^2
f(-x)=-f(x)
=>∫(-π/4->π/4) x^3/(cosx)^2 dx =0
//
∫(-π/4->π/4) (1+x^3)/(cosx)^2 dx
=∫(-π/4->π/4) dx/(cosx)^2 +∫(-π/4->π/4) x^3/(cosx)^2 dx
=∫(-π/4->π/4) dx/(cosx)^2
=∫(-π/4->π/4) (secx)^2 dx
=[tanx]|(-π/4->π/4)
=2
本回答被提问者采纳
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询