已知函数y=-sin(1/2x-π/3),x∈[0,π],求函数的最值与单调区间
1个回答
展开全部
ymax=1 ymin=-1
y=-sin(1/2x-π/3)=sin(1/2x+π-π/3)=sin(1/2x+2π/3)
当:1/2x+2π/3E[2kπ-π/2,2kπ+π/2]时,是增的
即:1/2xE[2kπ-7π/6,2kπ-π/6]
即:xE[4kπ-7π/3,4kπ-π/3]时,是增的.kEZ
当:1/2x+2π/3E[2kπ+π/2,2kπ+3π/2]时,是减的
即:1/2xE[2kπ-π/6,2kπ+5π/6]
即:xE[4kπ-π/3,4kπ+5π/3]时,是减的.kEZ
y=-sin(1/2x-π/3)=sin(1/2x+π-π/3)=sin(1/2x+2π/3)
当:1/2x+2π/3E[2kπ-π/2,2kπ+π/2]时,是增的
即:1/2xE[2kπ-7π/6,2kπ-π/6]
即:xE[4kπ-7π/3,4kπ-π/3]时,是增的.kEZ
当:1/2x+2π/3E[2kπ+π/2,2kπ+3π/2]时,是减的
即:1/2xE[2kπ-π/6,2kπ+5π/6]
即:xE[4kπ-π/3,4kπ+5π/3]时,是减的.kEZ
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询