函数y=xsinx在区间内是否有界
4个回答
Sievers分析仪
2024-10-13 广告
2024-10-13 广告
是的。传统上,对于符合要求的内毒素检测,最终用户必须从标准内毒素库存瓶中构建至少一式两份三点标准曲线;必须有重复的阴性控制;每个样品和PPC必须一式两份。有了Sievers Eclipse内毒素检测仪,这些步骤可以通过使用预嵌入的内毒素标准...
点击进入详情页
本回答由Sievers分析仪提供
展开全部
x的区间是整个实数集
当x趋于0,y趋于0
当x趋于无穷,y无界,但极限不存在
当x趋于0,y趋于0
当x趋于无穷,y无界,但极限不存在
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
展开全部
无界 比如x趋于无穷大 sinx=1时
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
展开全部
这个函数的值域是全体实数,所以这个函数是无界函数。
当x=2kπ+π/2(k是整数)时,sinx=1,这时候y=x,所以当x→+∞时,y的某些点可以无限增加到+∞
当x→-∞时,y的某些点可以无限减小到-∞,又因为这个函数是连续函数,所以y可以取得±∞之间的所有数,即全体实数。所以这个函数无界。
但是当x=kπ(k是整数)时。sinx=0,y=0。所以无论正数m取多大,都有|x|>m且符合x=kπ(k是整数)的x使得y=xsinx=0成立,所以对于任意正数k,无论取多大的m,当|x|>m时,都有一些x取值使得y=xsinx=0,无法使|y|≥k恒成立。所以当x→∞时,y的极限不是无穷大。
当x=2kπ+π/2(k是整数)时,sinx=1,这时候y=x,所以当x→+∞时,y的某些点可以无限增加到+∞
当x→-∞时,y的某些点可以无限减小到-∞,又因为这个函数是连续函数,所以y可以取得±∞之间的所有数,即全体实数。所以这个函数无界。
但是当x=kπ(k是整数)时。sinx=0,y=0。所以无论正数m取多大,都有|x|>m且符合x=kπ(k是整数)的x使得y=xsinx=0成立,所以对于任意正数k,无论取多大的m,当|x|>m时,都有一些x取值使得y=xsinx=0,无法使|y|≥k恒成立。所以当x→∞时,y的极限不是无穷大。
本回答被提问者采纳
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询