F(X)在X点处二阶可导,求LIM[F(X+H)-2F(X)+F(X-H)]/H^2 H趋于0 标答是 F''(X)
展开全部
以下极限都是h趋于0
lim [f(x+h)-2f(x)+f(x-h)]/h^2
(用洛必塔法则)
=lim [f'(x+h)-2f'(x)+f'(x-h)]/2h
=lim (1/2){[f'(x+h)-f'(x)]/h-[f'(x-h)-f'(x)]/(-h)}
=(1/2)[f''(x)-f''(x)]
=0
注意:
lim [f(x+h)-f(x)]/h=lim [f(x-h)-f(x)]/(-h)=f'(x)
lim [f(x+h)-2f(x)+f(x-h)]/h^2
(用洛必塔法则)
=lim [f'(x+h)-2f'(x)+f'(x-h)]/2h
=lim (1/2){[f'(x+h)-f'(x)]/h-[f'(x-h)-f'(x)]/(-h)}
=(1/2)[f''(x)-f''(x)]
=0
注意:
lim [f(x+h)-f(x)]/h=lim [f(x-h)-f(x)]/(-h)=f'(x)
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询