女儿数学-求所有数字之和-2020-12-13

 我来答
抛下思念17
2022-06-29 · TA获得超过1.1万个赞
知道大有可为答主
回答量:6735
采纳率:99%
帮助的人:39.3万
展开全部
求2000 ~ 3000这1001个连续自然数的全部数字之和。

先求2000 ~ 2999这1000个数字之和:
(2 + 2 + 9 + 9 + 9)✖️ (1000 ➗ 2) = 15500
3000这个数的数字之和:
3 + 0 + 0 + 0 = 3
15500 + 3 = 15503
答:2000 ~ 3000这1001个连续自然数的全部数字之和为15503

(2 + 2 + 9 + 9 + 9)✖️ (1000 ➗ 2) = 15500 这个算式是什么意思?为什么可以这么做?
其实这里运用了数学中常用的一种思想:对称思想;将1000 ✖️ 4 = 4000个数字的加法运算转换成了上面的乘法运算。推导过程如下图:

既然是“对称”,那么数字个数为偶数个。所以2000 ~ 3000这1001个数要拿掉一个3000,变成1000个数。
再举个例子,比如1 ~ 99这99个数,如果想用对称性,那么就要加个数字0,变成0 ~ 99这100个数;

是不是只需要偶数个数就具有对称性呢?答案是否定的。下面举一个偶数个,但是部队称的例子。比如简单一点:5 ~ 16这12个数就“不对称”

同样道理:

既然我们的目的是利用“对称”思想来简化数字之和的运算,那么“不对称”的那些数串对我们就没有意义;下面这些“对称”的典型数串队我们解题就非常有意义,需要牢牢记住,并灵活运用:

0 ~ 9;
0 ~ 19;
0 ~ 29;
... ...
0 ~ 99;

=========

0 ~ 199;
0 ~ 299;
... ...
0 ~ 999;

=========

0 ~ 1999;
0 ~ 2999;
... ...
0 ~ 9999;

15500 + 3 = 15503

这个结果和方法1的结果是一样的;

推荐用方法2,记住这些典型的“对称”数串,并通过分割,添补等辅助手段,达到简化计算的目的。
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式