为什么任何函数都可表示为奇函数和偶函数之和?

 我来答
轮看殊O
高粉答主

2022-09-23 · 说的都是干货,快来关注
知道大有可为答主
回答量:2.6万
采纳率:99%
帮助的人:723万
展开全部

因为函数f(x)一定可以分解为奇函数和偶函数之和。其实可以直接从构造出的两个函数来证明就行了。 f(x)=[f(x)+f(-x)]/2+[f(x)-f(-x)]/2

设函数y=F(x)

令f(x)=[F(x)+F(-x)]/2,则f(-x)=[F(-x)+F(x)]/2=f(x)

于是f(x)为偶函数

令g(x)=[F(x)-F(-x)]/2,则g(-x)=[F(-x)-F(x)]/2=-g(x)

则g(x)为奇函数

f(x)+g(x)=[F(x)+F(-x)]/2+)[F(x)-F(-x)]/2

=F(x)

于是任意F(x)可表示为偶函数f(x)=[F(x)+F(-x)]/2与奇函数g(x)=[F(x)-F(-x)]/2的和

所以,任意一个函数都可以写成一个奇函数和一个偶函数之和。

扩展资料

函数的奇偶性也就是对任意xEl,若f(-x)=f(x),即在关于y轴的对称点的函数值相等,则f(x)称为偶函数;若f(-x)= - f(x),即对称点的函数值正负相反,则f(x)称为奇函数。

平面直角坐标系中,偶函数的图象对称于y轴,奇函数的图象对称于原点.可导的奇(偶)函数的导函数的奇偶性与原来函数相反。定义在对称区间(或点集)上的任何函数f(x)都可以表示成奇函数φ( x)和偶函数ψ(x)之和。

推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式