求条件概率密度怎样求
条件概率密度=联合概率密度/边缘概率密度X的边缘密度:对y进行积分,被积函数是联合密度Y的边缘密度:对x进行积分,被积函数是联合密度积分区域的话,可以画出图来,就比较明了了。
对于连续型的随机变量,在一点处的取值概率为0,但是当这个问题出现在求条件概率密度时,思考的方向就变了,不能单纯的应用条件概率公式解题。
对于第三问如果你用条件概率公式
那么分母P(x=1/3),我的第一想法是这个概率为0啊,这样还怎么解题?此处出现重大认识上的误区!正确的做法应该是你求出x的边缘概率密度,然后看x=1/3处的结果,是多少就是多少,所以对于这道题而言,求出x的边缘概率密度是必须的!
扩展资料:
定义
类条件概率密度函数
是指在已知某类别的特征空间中,出现特征值X的概率密度,指第类样品其属性X是如何分布的。假定只用其一个特征进行分类,即n=1,并已知这两类的类条件概率密度函数分布,如图1所示,概率密度函数
是正常药品的属性分布,概率密度函数是异常药品的属性分布。例如,全世界华人占地球上人口总数的20%,但各个国家华人所占当地人口比例是不同的,类条件概率密度函数
是指条件下出现X的概率密度,在这里指第
类样品其属性X是如何分布的。在工程上的许多问题中,统计数据往往满足正态分布规律。正态分布简单、分析方便、参量少,是一种适宜的数学模型。如果采用正态密度函数作为类条件概率密度的函数形式,则函数内的参数,如期望和方差是未知的。那么问题就变成了如何利用大量样品对这些参数进行估计,只要估计出这些参数,类条件概率密度函数
也就确定了。
在大多数情况下,类条件密度可以采用多维变量的正态密度函数来模拟。
参考资料来源:百度百科-类条件概率密度
2024-10-28 广告