请写出下列函数的泰勒展开式。
sinx泰勒展开式是sinx=x-1/3!x^3+1/5!x^5+o(x ^5)。
sinx的泰勒展开式是不固定的,sin(sinx)∽x,设sinx=t,则sint~t,所以sint~t~sinx~x,由等价无穷小的传递性,因此泰勒展开为x,也可以直接算,求五次导数,可以解出除了x项以外都是0。
我们可以将sinx可以被展开成:a0*x^+a1*x^+a2*x^2+a3*x^3+a4*x^4+……这样的幂级数的形式,即:sinx= 1!*x^1+3!*x^3+5!*x^5+7!*x^7+... +(2n+1)!*x^(2n+1)+……这样的幂级数展开叫作正弦函数的泰勒展开。
常用泰勒展开式
e^x = 1+x+x^2/2!+x^3/3!+……+x^n/n!+……
ln(1+x)=x-x^2/2+x^3/3-……+(-1)^(k-1)*(x^k)/k + ……(|x|<1)
sin x = x-x^3/3!+x^5/5!-……+(-1)^(k-1)*(x^(2k-1))/(2k-1)!+……。(-∞
cos x = 1-x^2/2!+x^4/4!-……+(-1)k*(x^(2k))/(2k)!+…… (-∞
arcsin x = x + 1/2*x^3/3 + 1*3/(2*4)*x^5/5 + ……(|x|<1)
arccos x = π - ( x + 1/2*x^3/3 + 1*3/(2*4)*x^5/5 + …… ) (|x|<1)
arctan x = x - x^3/3 + x^5/5 -……(x≤1)