高数学的好的进来啊.证明不等式:(a+b)e∧(a+b)<ae∧2a+be∧2b,其中a,b>0.
1个回答
展开全部
(a+b)e^(a+b)-ae^2a-be^2b=[ae^(a+b)-ae^2a]+[be^(a+b)-be^2b]=ae^a*(e^b-e^a)+be^b*(e^a-e^b)=(e^a-e^b)(ae^a+be^b)因为a,b>0,则(ae^a+be^b)>0当a>b,(a+b)e^(a+b)>ae^2a+be^2b当a=b,(a+b)e^(a+b)=ae^2a+be^2b...
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询