log函数有什么性质?
基本性质:
1、a^(log(a)(b))=b
2、log(a)(a^b)=b
3、log(a)(MN)=log(a)(M)+log(a)(N);
4、log(a)(M÷N)=log(a)(M)-log(a)(N);
5、log(a)(M^n)=nlog(a)(M)
6、log(a^n)M=1/nlog(a)(M)
其他性质:
1、换底公式log(a)(N)=log(b)(N)÷log(b)(a)
2、log(a)(b)=1/log(b)(a)
3、对数函数的图像都过(1,0)点。
4、对于y=log(a)(n)函数
当0<a1时,图像上显示函数为(0,+∞)单增,随着a的增大,图像逐渐以(1.0)点为轴逆时针转动,但不超过X=1.5。与其他函数与反函数之间图像关系相同,对数函数和指数函数的图像关于直线y=x对称。
对数函数性质
定义域求解:对数函数y=logax 的定义域是{x 丨x>0},但如果遇到对数型复合函数的定义域的求解,除了要注意大于0以外,还应注意底数大于0且不等于1,如求函数y=logx(2x-1)的定义域,需同时满足x>0且x≠1和2x-1>0 ,得到x>1/2且x≠1,即其定义域为 {x 丨x>1/2且x≠1}
值域:实数集R,显然对数函数无界;
定点:对数函数的函数图像恒过定点(1,0);
单调性:a>1时,在定义域上为单调增函数;0<a<1时,在定义域上为单调减函数;
奇偶性:非奇非偶函数
周期性:不是周期函数
对称性:无
最值:无
零点:x=1
2023-06-12 广告