设矩阵A是n×n阶实对称矩阵,且A的平方等于0,证明A=0

 我来答
机器1718
2022-08-01 · TA获得超过6844个赞
知道小有建树答主
回答量:2805
采纳率:99%
帮助的人:162万
展开全部
设矩阵A是n×n阶实对称矩阵,且A的平方等于0,证明A=0设A=[aij],其中i,j=1,2,...,n令C=A^2=A×A,依据矩阵乘法法则,C中主对角线上元素cii就是A的第i行和A第i列元素对应相乘再相加所得.其中i=1,2,...,ncii=ai1*ai1+ai2*a...
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式