如何开根号
1个回答
展开全部
如何计算开根号?
假设被开放数为a,如果用sqrt(a)表示根号a那么[sqrt(x)-sqrt(a/x)]^2=0的根就是sqrt(a)
变形得
sqrt(a)=(x+a/x)/2
所以你只需设置一个约等于(x+a/x)/2的初始值,代入上面公式,可以得到一个更加近似的值,再将它代入,就得到一个更加精确的值……依此方法,最后得到一个足够精度的(x+a/x)/2的值。
如:计算sqrt(5)
设初值为2
1)sqrt(5)=(2+5/2)/2=2.25
2)sqrt(5)=(2.25+5/2.25)/2=2.236111
3)sqrt(5)=(2.236111+5/2.236111)/2=2.236068
这三步所得的结果和sqrt(5)相差已经小于0.001
根号怎么开
手工开根号法,只适用于任何一个整数或者有限小数开二次方.
因为网上写不出样式复杂的计算式,所以只能尽量书写,然后通过口述来解释:
假设一个整数1456456,开根号首先要从个位开始,每两位数做个标记,这里用'表示,那么标记后变成1'45'64'56.然后根据你要开的小数位数在小数点后补0,这里的举例开到整,则补2个0,(原因等明白该做法后自会理解),解法如下:
解法中需要说明的几个问题:
1,算式中的。.没有意义,是因为网上无法排版,为了能把版式排得整齐点而加上的
2,为了区别小数点,所以小数点用。表示,而所有的.都是为了排版需要
3、除了1'45'64'56中的'有特殊意义,在解题中有用处外,其他的'都是为了排版和对起位置,说明数字来源而加的,取消没有任何影响
。。。..1..2..0..6。8
。。。-----------------------
。..1../..1'45'64'56.00。。..(1)
。。。。.1
。。。。--------
。。.22..|.45。。。。。..(2)
。。。。..44
。。。。..--------
。。..240.|.1'64。。。。..(3)
。。。。。。..0
。。。。。---------
。。.2406.|.1'64'56。。。..(4)
。。。。。。1'44'36
。。。。。..-----------
。。..24128.|.20'20'00。。..(5)
。。。。。。..19'29'74
。。。。。。----------
。。。。。。。..10'26
其中第(1)步的意思是对左起第一个'号前的数字进行开方,即本题中的1进行开方.并将数字写在上面.
第(2)步的意思是将第二个'号和第一个'号之间的数字,即45,写下来作为被除数,把上一步已经得到并写在上面的数字1乘以20作为除数的一部分,另一部分就得通过判断,得到一个数字a,使得除数为(1*20+a),同时商也为a,本步骤中,判断得到a应为2,所以除数是22,而2作为商写到了上面,1的右边.
第(3)步,把上一步除法计算的余数1移下来,同时把第三个'号和第二个'号之间的数字64也移下来,组成数字164作为被除数,然后重复上面的方法,把之前写到上面的数字12乘以20再加上一个可以作为本步骤的商的数字,组成除数.因为经过判断,本步骤只有0符合条件,所以除数是240,而商是0写到上面,164作为余数向下移.
第(4)步,如果前面能看懂的话,这一步其实只是前面的重复,把164和56都移下来组成被除数16456,然后120乘以20再加上6组成除数,同时6本身就是商,得到余数2020.
第(5)步依然是重复,需要特殊说明的是,对于小数点后面的数字,用0补位数就可以了,依然是两位加个'号,做法不变.
上面就是基本步骤了,总结起来就是先分位数,然后对第一个分位数字进行开方,如果有余数就想下移,和第二个分位组成被除数.而除数是之前已经得到的商乘以20加上某数字组成,而这个数字要在这个步骤中作为商出现的,所以这个数字是0-9中的哪个数字,得进行心算或口算来判断,得到余数再下移,一直重复到得到答案.
其中还要说明的是每一步得到的余数一定不能比除数大,也不能小于0,不然是无效的,说明选择做商的数字是不对的.
开根号怎么算?
开根号就像求一个数的几次方的反义词一样,比如3的2次方是9,那么9开根号2就是3。
比如136161这个数字,首先我们找到一个和136161的平方根比较接近的数,任选一个,比方说300到400间的任何一个数,这里选350,作为代表。
我们计算(350+136161/350)/2得到369.5
然后我们再计算(369.5+136161/369.5)/2得到369.0003,我们发现369.5和369.0003相差无几,并且,369^2末尾数字为1。我们有理由断定369^2=136161
一般来说能够开方开的尽的,用上述方法算一两次基本结果就出来了。再举个例子:计算469225的平方根。首先我们发现600^2对于那些开方开不尽的数,用这种方法算两三次精度就很可观了,一般达到小数点后好几位。
实际中这种算法也是计算机用于开方的算法
假设被开放数为a,如果用sqrt(a)表示根号a那么[sqrt(x)-sqrt(a/x)]^2=0的根就是sqrt(a)
变形得
sqrt(a)=(x+a/x)/2
所以你只需设置一个约等于(x+a/x)/2的初始值,代入上面公式,可以得到一个更加近似的值,再将它代入,就得到一个更加精确的值……依此方法,最后得到一个足够精度的(x+a/x)/2的值。
如:计算sqrt(5)
设初值为2
1)sqrt(5)=(2+5/2)/2=2.25
2)sqrt(5)=(2.25+5/2.25)/2=2.236111
3)sqrt(5)=(2.236111+5/2.236111)/2=2.236068
这三步所得的结果和sqrt(5)相差已经小于0.001
根号怎么开
手工开根号法,只适用于任何一个整数或者有限小数开二次方.
因为网上写不出样式复杂的计算式,所以只能尽量书写,然后通过口述来解释:
假设一个整数1456456,开根号首先要从个位开始,每两位数做个标记,这里用'表示,那么标记后变成1'45'64'56.然后根据你要开的小数位数在小数点后补0,这里的举例开到整,则补2个0,(原因等明白该做法后自会理解),解法如下:
解法中需要说明的几个问题:
1,算式中的。.没有意义,是因为网上无法排版,为了能把版式排得整齐点而加上的
2,为了区别小数点,所以小数点用。表示,而所有的.都是为了排版需要
3、除了1'45'64'56中的'有特殊意义,在解题中有用处外,其他的'都是为了排版和对起位置,说明数字来源而加的,取消没有任何影响
。。。..1..2..0..6。8
。。。-----------------------
。..1../..1'45'64'56.00。。..(1)
。。。。.1
。。。。--------
。。.22..|.45。。。。。..(2)
。。。。..44
。。。。..--------
。。..240.|.1'64。。。。..(3)
。。。。。。..0
。。。。。---------
。。.2406.|.1'64'56。。。..(4)
。。。。。。1'44'36
。。。。。..-----------
。。..24128.|.20'20'00。。..(5)
。。。。。。..19'29'74
。。。。。。----------
。。。。。。。..10'26
其中第(1)步的意思是对左起第一个'号前的数字进行开方,即本题中的1进行开方.并将数字写在上面.
第(2)步的意思是将第二个'号和第一个'号之间的数字,即45,写下来作为被除数,把上一步已经得到并写在上面的数字1乘以20作为除数的一部分,另一部分就得通过判断,得到一个数字a,使得除数为(1*20+a),同时商也为a,本步骤中,判断得到a应为2,所以除数是22,而2作为商写到了上面,1的右边.
第(3)步,把上一步除法计算的余数1移下来,同时把第三个'号和第二个'号之间的数字64也移下来,组成数字164作为被除数,然后重复上面的方法,把之前写到上面的数字12乘以20再加上一个可以作为本步骤的商的数字,组成除数.因为经过判断,本步骤只有0符合条件,所以除数是240,而商是0写到上面,164作为余数向下移.
第(4)步,如果前面能看懂的话,这一步其实只是前面的重复,把164和56都移下来组成被除数16456,然后120乘以20再加上6组成除数,同时6本身就是商,得到余数2020.
第(5)步依然是重复,需要特殊说明的是,对于小数点后面的数字,用0补位数就可以了,依然是两位加个'号,做法不变.
上面就是基本步骤了,总结起来就是先分位数,然后对第一个分位数字进行开方,如果有余数就想下移,和第二个分位组成被除数.而除数是之前已经得到的商乘以20加上某数字组成,而这个数字要在这个步骤中作为商出现的,所以这个数字是0-9中的哪个数字,得进行心算或口算来判断,得到余数再下移,一直重复到得到答案.
其中还要说明的是每一步得到的余数一定不能比除数大,也不能小于0,不然是无效的,说明选择做商的数字是不对的.
开根号怎么算?
开根号就像求一个数的几次方的反义词一样,比如3的2次方是9,那么9开根号2就是3。
比如136161这个数字,首先我们找到一个和136161的平方根比较接近的数,任选一个,比方说300到400间的任何一个数,这里选350,作为代表。
我们计算(350+136161/350)/2得到369.5
然后我们再计算(369.5+136161/369.5)/2得到369.0003,我们发现369.5和369.0003相差无几,并且,369^2末尾数字为1。我们有理由断定369^2=136161
一般来说能够开方开的尽的,用上述方法算一两次基本结果就出来了。再举个例子:计算469225的平方根。首先我们发现600^2对于那些开方开不尽的数,用这种方法算两三次精度就很可观了,一般达到小数点后好几位。
实际中这种算法也是计算机用于开方的算法
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询