求函数z=xy在条件x+y^2=1下的取得极小值点的坐标为

 我来答
机器1718
2022-07-17 · TA获得超过6867个赞
知道小有建树答主
回答量:2805
采纳率:99%
帮助的人:164万
展开全部
答:
z=xy,x+y^2=1
x=1-y^2代入z得:
z=(1-y^2)y
z=y-y^3
z对y求导:
z'(y)=1-3y^2
再次求导:z''(y)=-6y
解z'(y)=1-3y^2=0
得:y=-√3/3或者y=√3/3
此时z''(y)≠0
所以:z存在极大值点和极小值点
y=-√3/3时,z取得极小值,坐标(2/3,-√3/3,-2√3/9)
y=√3/3时,z取得极大值,坐标(2/3,√3/3,2√3/9)
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式