椭圆,双曲线和抛物线的准线方程是什么啊
1个回答
展开全部
您好,答案如下哈 椭圆是一种圆锥曲线(也有人叫圆锥截线的) 1、平面上到两点距离之和为定值的点的集合(该定值大于两点间距离,一般称为2a)(这两个定点也称为椭圆的焦点,焦点之间的距离叫做焦距); 2、平面上到定点距离与到定直线间距离之比为常数的点的集合(定点不在定直线上,该常数为小于1的正数)(该定点为椭圆的焦点,该直线称为椭圆的准线)。这两个定义是等价的 椭圆的标准方程有两种,取决于焦点所在的坐标轴: 1)焦点在X轴时,标准方程为:x^2/a^2+y^2/b^2=1 (a>b) 2)焦点在Y轴时,标准方程为:x^2/b^2+y^2/a^2=1 (a>b) 其中a>0,b>0。a、b中较大者为椭圆长半轴长,较短者为短半轴长(椭圆有两条对称轴,对称轴被椭圆所截,有两条线段,它们的一半分别叫椭圆的长半轴和短半轴或半长轴和半短轴)当a>b时,焦点在x轴上,焦距为2*(a^2-b^2)^0.5,焦距与长.短半轴的关系:b^2=a^2-c^2 ,准线方程是x=a^2/c和x=-a^2/c 又及:如果中心在原点,但焦点的位置不明确在X轴或Y轴时,方程可设为mx^2+ny^2=1(m>0,n>0,m≠n)。既标准方程的统一形式。 椭圆的面积是πab。椭圆可以看作圆在某方向上的拉伸,它的参数方程是:x=acosθ , y=bsinθ 标准形式的椭圆在x0,y0点的切线就是 : xx0/a^2+yy0/b^2=1 数学上指一动点移动于一个平面上,与平面上两个定点F1,F2的距离的差的绝对值始终为一定值2a(2a小于F1和F2之间的距离)时所成的轨迹叫做双曲线(Hyperbola)。两个定点F1,F2叫做双曲线的焦点(focus)。 双曲线的第二定义: x=a^2/c (c>a>0) 平面内一个动点到一个定点与一条定直线的距离之比是一个大于1的常数。定点是双曲线的焦点,定直线是双曲线的准线,常数e是双曲线的离心率。 注意:定点要在直线外;比值大于1 ·双曲线的标准方程为(x^2/a^2)-(y^2/b^2)=1 其中a>0,b>0,c^2=a^2+b^2,动点与两个定点距离之差的绝对值为定值2a 1、取值区域:x≥a,x≤-a或者y≥a,y≤-a 2、对称性:关于坐标轴和原点对称。 3、顶点:A(-a,0) A’(a,0) AA’叫做双曲线的实轴,长2a; B(0,-b) B’(0,b) BB’叫做双曲线的虚轴,长2b。 4、渐近线: 横轴:y=±(b/a)x 竖轴:y=±(a/b)x 5、离心率: e=c/a 取值范围:(1,+∞) 6 双曲线上的一点到定点的距离和到定直线(相应准线)的距离的比等于双曲线的离心率 7 双曲线焦半径公式:圆锥曲线上任意一点到焦点距离。 过右焦点的半径r=|ex-a| 过左焦点的半径r=|ex+a| 8 等轴双曲线 双曲线的实轴与虚轴长相等 2a=2b e=√2 9 共轭双曲线 (x^2/a^2)-(y^2/b^2)=1 与 (y^2/b^2)-(x^2/a^2)=1 叫共轭双曲线 (1)共渐近线 (2)e1+e2>=2√2 10 准线: x=±a^2/c,或者y=±a^2/c 11。通径(定义:圆锥曲线(除圆外)中,过焦点并垂直于轴的弦):2b^2/a 抛物线 平面内,到一个定点F和一条定直线l距离相等的点的轨迹(或集合)称之为抛物线。另外,F称为"抛物线的焦点",l称为"抛物线的准线"。 定义焦点到抛物线的准线的距离为"焦准距",用p表示.p>0. 以平行于地面的方向将切割平面插入一个圆锥,可得一个圆,如果倾斜这个平面直至与其一边平行,就可以做一条抛物线。 抛物线的标准方程 右开口抛物线:y^2=2px 左开口抛物线:y^2=-2px 上开口抛物线:y=x^2/2p 下开口抛物线:y=-x^2/2p 抛物线相关参数(对于向右开口的抛物线) 离心率:e=1 焦点:(p/2,0) 准线方程l:x=-p/2 顶点:(0,0) 通径(定义:圆锥曲线(除圆外)中,过焦点并垂直于轴的弦):2P 抛物线:y = ax^2 + bx + c (a=/0) 就是y等于ax 的平方加上 bx再加上 c a > 0时开口向上 a < 0时开口向下 c = 0时抛物线经过原点 b = 0时抛物线对称轴为y轴 还有顶点式y = a(x-h)^2 + k 就是y等于a乘以(x-h)的平方+k h是顶点坐标的x k是顶点坐标的y 标准形式的抛物线在x0,y0点的切线就是 :yy0=p(x+x0) 一般用于求最大值与最小值 抛物线标准方程:y^2=2px 它表示抛物线的焦点在x的正半轴上,焦点坐标为(p/2,0) 准线方程为x=-p/2 由于抛物线的焦点可在任意半轴,故共有标准方程y^2=2px y^2=-2px x^2=2py x^2=-2py 如果满意请采纳哦谢谢啦,祝您学习进步哦
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
富港检测技术(东莞)有限公司_
2024-04-02 广告
2024-04-02 广告
正弦振动多用于找出产品设计或包装设计的脆弱点。看在哪一个具体频率点响应最大(共振点);正弦振动在任一瞬间只包含一种频率的振动,而随机振动在任一瞬间包含频谱范围内的各种频率的振动。由于随机振动包含频谱内所有的频率,所以样品上的共振点会同时激发...
点击进入详情页
本回答由富港检测技术(东莞)有限公司_提供
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询