焦点三角形和椭圆三角形面积的关系是什么
1个回答
展开全部
椭圆三角形面积公式:S=b2*tan。椭圆是移动点P的轨迹,其从平面到固定点F1和F2的距离之和等于常数(大于态中|F1F2|)。F1和F2称为椭圆的两个焦点。数学表达式为:
Pf1|PF2|=2A(2A>|F1F2|)。
椭圆的焦点三角形是指以椭圆的两个焦点F1,F2与椭圆上任意一点P为顶点组成的三角春埋形。焦点三角形面积公式是S=b²·tan(θ/2)(θ为焦点三角形的顶角)。
椭圆的焦点三角扒闭蚂形性质为:
(1)|PF1|+|PF2|=2a。
(2)4c²=|PF1|²+|PF2|²-2|PF1|·|PF2|·cosθ。
(3)周长=2a+2c。
(4)面积=S=b²·tan(θ/2)(∠F1PF2=θ)。
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询