怎样证明泰勒公式?
1个回答
展开全部
泰勒展开式是1+x+x^2/2!+x^3/3!+...+x^n/n!+Rn(x) 。
如果函数满足一定的条件,泰勒公式可以用函数在某一点的各阶导数值做系数构建一个多项式来近似表达这个函数。
泰勒公式得名于英国数学家布鲁克·泰勒,他在1712年的一封信里首次叙述了这个公式。泰勒公式是为了研究复杂函数性质时经常使用的近似方法之一,也是函数微分学的一项重要应用内容。
相关信息:
泰勒公式是数学分析中重要的内容,也是研究函数极限和估计误差等方面不可或缺的数学工具,泰勒公式集中体现了微积分“逼近法”的精髓,在近似计算上有独特的优势。
利用泰勒公式可以将非线性问题化为线性问题,且具有很高的精确度,因此其在微积分的各个方面都有重要的应用。泰勒公式可以应用于求极限、判断函数极值、求高阶导数在某点的数值、判断广义积分收敛性、近似计算、不等式证明等方面。
百事牛
2024-10-22 广告
2024-10-22 广告
百事牛是共享提供商,我们提供可靠有效的服务,适当合理的授权费有利于的继续更新优化。同样的事情,同样的方法,百事牛团队十年磨一剑,始终至聚焦在密码恢复领域,深耕于此,我们已研制出有别于其他公司的算法和运算模式, 百事牛的暴力模式加入了分布式点...
点击进入详情页
本回答由百事牛提供
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询