在线性规划中,什么是最优解?什么是最优解不唯一?最优解是让z取得最大值的点的坐标吗?
最优解是使得目标函数取到最大值或最小值(视情况而定)的解。
在高中阶段目标函数一般是二元函数z(x,y)。假设可行域(即满足限定条件的x,y范围,可表示为平面直角坐标系内的一个区域)为X。
假设目标函数z=ax+by是一线性函数,在坐标系内图像为一条直线,直线平移时z值发生变化。若X有一条外侧的边平行于目标函数的直线,则直线与该边重合时,边上所有点都是最优解,所以最优解可能不唯一。
最优解可以理解为让z取得最值的点的坐标。
扩展资料:
使目标函数取最小值的可行解称为极小解,使其取最大值的可行解称为极大解。极小解或极大解均称为最优解。相应地,目标函数的最小值或最大值称为最优值。有时,也将最优解和最优值一起称为相应数学规划问题的最优解。
线性规划的最优解不一定只有一个,若其有多个最优解,则所有最优解所构成的集合称为该线性规划的最优解域。
函数与不等式和方程存在联系(初等函数)。令函数值等于零,从几何角度看,对应的自变量的值就是图像与X轴的交点的横坐标;从代数角度看,对应的自变量是方程的解。
另外,把函数的表达式(无表达式的函数除外)中的“=”换成“<”或“>”,再把“Y”换成其它代数式,函数就变成了不等式,可以求自变量的范围。
参考资料来源:百度百科--基本最优解
参考资料来源:百度百科--最优解