如果矩阵A有n个特征值那么特征值是_

 我来答
Dilraba学长
高粉答主

2023-01-20 · 听从你心 爱你所爱 无问西东
Dilraba学长
采纳数:1107 获赞数:411047

向TA提问 私信TA
展开全部

答案为2、4、0。

解题过程如下:

1. A的行列式等于A的全部特征值之积

所以 |A| = -1*1*2 = -2

2. 若a是可逆矩阵A的特征值, 则 |A|/a 是A*的特征值

所以A*的特征值为 2,-2,-1

所以|A*| = 2*(-2)*(-1) = 4.

注: 当然也可用伴随矩阵的行列式性质 |A*| = |A|^(n-1) = |A|^2 = (-2)^2 = 4.

3. 若a是可逆矩阵A的特征值, 则对多项式g(x), g(a)是g(A)的特征值

这里 g(x) = x^2-2x+1, g(A)=A^2-2A+E

所以 g(A)=A^2-2A+E 的特征值为 g(-1),g(1),g(2), 即 4,0,1

所以 |A^2-2A+E| = 4*0*1 = 0

特征值是线性代数中的一个重要概念。在数学、物理学、化学、计算机等领域有着广泛的应用。设 A 是n阶方阵,如果存在数m和非零n维列向量 x,使得 Ax=mx 成立,则称 m 是A的一个特征值(characteristic value)或本征值(eigenvalue)。非零n维列向量x称为矩阵A的属于(对应于)特征值m的特征向量或本征向量。

扩展资料

求矩阵的全部特征值和特征向量的方法如下:

第一步:计算的特征多项式;

第二步:求出特征方程的全部根,即为的全部特征值;

第三步:对于的每一个特征值,求出齐次线性方程组:

的一个基础解系,则的属于特征值的全部特征向量是

(其中是不全为零的任意实数).

[注]:若是的属于的特征向量,则也是对应于的特征向量,因而特征向量不能由特征值惟一确定.反之,不同特征值对应的特征向量不会相等。

推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式