如何求矩阵的秩?都有哪些方法?

 我来答
帐号已注销
2023-03-31 · TA获得超过835个赞
知道大有可为答主
回答量:7074
采纳率:100%
帮助的人:158万
展开全部

一般有以下几种方法:

1、计算A^2,A^3 找规律,然后用归纳法证明。

2、若r(A)=1,则A=αβ^T,A^n=(β^Tα)^(n-1)A

注:β^Tα =α^Tβ = tr(αβ^T)

3、分拆法:A=B+C,BC=CB,用二项式公式展开。

适用于 B^n 易计算,C的低次幂为零:C^2 或 C^3 = 0

4、用对角化 A=P^-1diagP

A^n = P^-1diag^nP

矩阵的秩计算方法:矩阵的行秩,列秩,秩都相等,初等变换不改变矩阵的秩,如果A可逆,则r(AB)=r(B),r(BA)=r(B),矩阵的乘积的秩Rab<=min{Ra,Rb}。

引理:设矩阵A=(aij)sxn的列秩等于A的列数n,则A的列秩,秩都等于n,当r(A)<=n-2时,最高阶非零子式的阶数<=n-2,任何n-1阶子式均为零,而伴随阵中的各元素就是n-1阶子式再加上个正负号,所以伴随阵为0矩阵,当r(A)<=n-1时,最高阶非零子式的阶数<=n-1,所以n-1阶子式有可能不为零,所以伴随阵有可能非零。

推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式