分块矩阵怎么求逆矩阵

 我来答
百度网友21c916a
2023-04-05 · TA获得超过103个赞
知道小有建树答主
回答量:1230
采纳率:97%
帮助的人:23.6万
展开全部

分块矩阵怎么求逆矩阵内容如下:

矩阵是对方阵定义的,因此逆矩阵一定是方阵。设B与C都为A的逆矩阵,则有B=C,假设B和C均是A的逆矩阵,B=BI=B(AC)=(BA)C=IC=C,因此某矩阵的任意两个逆矩阵相等。由逆矩阵的唯一性,A-1的逆矩阵可写作(A-1)-1和A,因此相等。

方法:

矩阵A可逆,有AA-1=I。(A-1)TAT=(AA-1)T=IT=I,AT(A-1)T=(A-1A)T=IT=I

由可逆矩阵的定义可知,AT可逆,其逆矩阵为(A-1)T。而(AT)-1也是AT的.逆矩阵,由逆矩阵的唯一性,因此(AT)-1=(A-1)T。

性质:

1.同结构的分块上(下)三角形矩阵的和(差)、积(若乘法运算能进行)仍是同结构的分块矩阵。

2.数乘分块上(下)三角形矩阵也是分块上(下)三角形矩阵。

3.分块上(下)三角形矩阵可逆的充分必要条件是的主对角线子块都可逆;若可逆,则的逆阵也是分块上(下)三角形矩阵。

4.分块上(下)三角形矩阵对应的行列式。

推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式