泰勒公式为什么可以用等价无穷小替换?

 我来答
是你找到了我
高粉答主

2023-03-25 · 说的都是干货,快来关注
知道小有建树答主
回答量:916
采纳率:100%
帮助的人:43万
展开全部

因为lim (e^x-1)/x (0/0型,适用罗必达),

当x->0时,等于lim e^x/1=1;

所以为等价无穷小 。

泰勒公式是将一个在x=x0处具有n阶导数的函数f(x)利用关于(x-x0)的n次多项式来逼近函数的方法。

若函数f(x)在包含x0的某个闭区间[a,b]上具有n阶导数,且在开区间(a,b)上具有(n+1)阶导数,则对闭区间[a,b]上任意一点x,成立下式:

扩展资料:

常见的等价无穷小替换:

当x→0时,

1、sinx~x

2、tanx~x

3、arcsinx~x

4、arctanx~x

5、1-cosx~(1/2)*(x^2)~secx-1

6、ln(1+x)~x

推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式