从1、2、3、……、n中,任取57个数,使这57个数必有两个数的差为13,则n的最大值为多少?

A.106B.107C.108D.109... A.106
B.107
C.108
D.109
展开
考试资料网
2023-04-14 · 百度认证:赞题库官方账号
考试资料网
向TA提问
展开全部
【答案】:C

【答案】C。解析:根据两数之差不能为13,构造(1、14、27、40、……)、(2、15、28、41、……)、(3、16、29、42、)、……、(13、26、39、……)。显然每个括号中均不能取连续的两个数,现要求任取57个数必有两数差为13时,n的最大值.那考虑取57个可能没有两数之差为13时,n的最小值,显然每组数中取第1、3、5、7、……个数可使n最小,相当于每26个数取前13个数,那么要取57个数,57÷13=4……5,n最小为26×4+5=109,即n为109时就能满足取57个数且可能没有两数之差为13的情况,当n为108时,必然有两个数之差为13,所以n的最大值为108。应选择C。
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式