泰勒公式证明过程的理解
泰勒公式是一种将一个函数在某一点处展开成多项式的公式。它的证明涉及到将函数表示为一个无穷级数的形式并使用级数收敛的性质来证明泰勒公式的成立。
设$f(x)$在$x=a$处取得一个有限次多项式$f(x)=f(a)+f'(a)(x-a)+f''(a)/2!(x-a)^2+...+f^{(n)}(a)/n!(x-a)^n$,其中$f'(a)$表示$f(x)$在$x=a$处的导数,$f''(a)$表示$f(x)$在$x=a$处的二阶导数,$...$表示后面的项。那么,将$f(x)$表示为$f(x)=f(a)+f'(a)(x-a)+f''(a)/2!(x-a)^2+...+f^{(n)}(a)/n!(x-a)^n$后,泰勒公式的成立由以下性质来证明:
1. 级数的和在$x=a$处是收敛的,即$\sum_{k=0}^n f^{(k)}(a)/k!(x-a)^k$在$x=a$处是收敛的。
2. 级数的各个部分在$x=a$处都是收敛的。
证明这两个性质可以帮助我们证明泰勒公式的成立。具体来说,我们可以将$f(x)$表示为$f(x)=f(a)+f'(a)(x-a)+f''(a)/2!(x-a)^2+...+f^{(n)}(a)/n!(x-a)^n$,然后分别对$f(x)$在$x=a$处每一项的收敛性进行证明。
对于$f(x)$在$x=a$处的导数$f'(a)$,由于$f'(a)$在$x=a$处是一个有限次多项式,因此,$f'(a)$在$x=a$处是单调递增或单调递减的。如果$f'(a)$是单调递增的,那么根据极限的定义,$f(x)$在$x=a$处是单调递增的,因此,$\sum_{k=0}^n f^{(k)}(a)/k!(x-a)^k$在$x=a$处是单调递增的,从而在$x=a$处泰勒公式的和是收敛的。如果$f'(a)$是单调递减的,那么根据极限的定义,$f(x)$在$x=a$处是单调递减的,因此,$\sum_{k=0}^n f^{(k)}(a)/k!(x-a)^k$在$x=a$处是单调递减的,从而在$x=a$处泰勒公式的和也是收敛的。
对于$f(x)$在$x=a$处的二阶导数$f''(a)$,由于$f''(a)$是一个有限次多项式,因此,$f''(a)$在$x=a$处是单调递增或单调递减的。如果$f''(a)$是单调递增的,那么根据极限的定义,$f(x)$在$x=a$处是单调递增的,因此,$\sum_{k=0}^n f^{(k)}(a)/k!(x-a)^k$在$x=a$处是单调递增的,从而在$x=a$处泰勒公式的和是收敛的。如果$f''(a)$是单调递减的,那么根据极限的定义,$f(x)$在$x=a$处是单调递减的,因此,$\sum_{k=0}^n f^{(k)}(a)/k!(x-a)^k$在$x=a$处是单调递减的,从而在$x=a$处泰勒公式的和也是收敛的。
综上所述,由1和2两个性质可以证明泰勒公式的成立。