结构方程模型怎么做
1、问卷设计
一般而言,利用SEM分析的数据来源于问卷调查,当然也可以用其他的观察变量直接进行分析,比如说在经济领域建模,类似于资本、人力、投资等是可以直接观察的,不需要引入潜在变量,所以也不需要问卷进行数据收集,一般是有数据库这样子的。
2、样本量确定
经验法则为每个预测变量用15个样本,Bentler and Chou (1987) 提出样本数至少为估计参数的5倍(在服从正太,无遗漏变量值及极端值的情况下),否则要15倍的样本量。Loehlin (1992)提出,一个有2至4个因素的模型,至少100个样本,200个更好, 小样本容易导致收敛失败、不适当的解(违犯估计) 、低估参数值及错误的标准误等。
3、选择参数估计方法
ML(极大似然法):只有样本是大样本并且假设观察数据服从多元正太分布,卡方检验才可以合理使用,此时使用ML估计法最为合适。ML比ULS有效率,因为可以得到较小的标准误。GLS(一般化最小平方法):如果样本为大样本,但观察数据不服从多元正太分布,最好采用GLS估计法(周子敬,2006)。GLS和ULS均是全信息估计方法,但是ULS需要所需的观察尺度相同。GLS是WLS(ADF)的一条分支。IV法(工具性变量法)、TSLS法(两阶段最小平方法)属于快速、非递归、有限信息技术的估计方法。WLS法和DWLS法不像GLS法与ML法,受到数据须符合多元正太的假定限制,但为了使估计结果可以收敛,WLS法和DWLS法的运算需要非常大的样本量,一般在1000+。当数据非正太,无法使用ML法和GLS法估计参数时,才考虑WLS、DWLS法(Diamantopoulos& Siguaw,2000)。