定积分的求解方法
展开全部
定积分的求解方法:定积分的换元积分法、牛顿—莱布尼兹公式,具体内容如下:
一、定积分的换元积分法:
换元积分法是求积分的一种方法。它是由链式法则和微积分基本定理推导而来的。
在计算函数导数时.复合函数是最常用的法则,把它反过来求不定积分,就是引进中间变量作变量替换,把一个被积表达式变成另一个被积表达式。从而把原来的被积表达式变成较简易的不定积分这就是换元积分法。换元积分法有两种,第一类换元积分法和第二类换元积分法。
二、牛顿—莱布尼兹公式:
牛顿-莱布尼茨公式(Newton-Leibniz formula),通常也被称为微积分基本定理,揭示了定积分与被积函数的原函数或者不定积分之间的联系。
牛顿-莱布尼茨公式的内容是一个连续函数在区间 [ a,b ] 上的定积分等于它的任意一个原函数在区间[ a,b ]上的增量。
牛顿在1666年写的《流数简论》中利用运动学描述了这一公式,1677年,莱布尼茨在一篇手稿中正式提出了这一公式。 因为二者最早发现了这一公式,于是命名为牛顿-莱布尼茨公式。
牛顿-莱布尼茨公式给定积分提供了一个有效而简便的计算方法,大大简化了定积分的计算过程。
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询