微分中dx 与△x 有什么区别
1.dx是Δx的近似值,其中Δx比dx多了一个低价无穷小,即:Δx=dx+o(dx), 其中o(dx)是比dx高阶的无穷少,这一项非常小故可以忽略,dx≈Δx
2.如果此处的x是自变量,那么dx=△x,通常把自变量x的增量△x称为自变量的微分,记作dx;如果这里的x是因变量,那么把自变量写作y的话,△x是变化量,dx=导数*△y
3.dx是x的微分,Δx是x的改变量。一般两者不等。前者是后者的线性主部。但对自变量而言,因为x对x的导数恒等于1,两者相等。反之,两者相等的也只有自变量。
扩展资料
不定积分的公式
1、∫ a dx = ax + C,a和C都是常数
2、∫ x^a dx = [x^(a + 1)]/(a + 1) + C,其中a为常数且 a ≠ -1
3、∫ 1/x dx = ln|x| + C
4、∫ a^x dx = (1/lna)a^x + C,其中a > 0 且 a ≠ 1
5、∫ e^x dx = e^x + C
6、∫ cosx dx = sinx + C
7、∫ sinx dx = - cosx + C
8、∫ cotx dx = ln|sinx| + C = - ln|cscx| + C
9、∫ tanx dx = - ln|cosx| + C = ln|secx| + C
10、∫ secx dx =ln|cot(x/2)| + C = (1/2)ln|(1 + sinx)/(1 - sinx)| + C = - ln|secx - tanx| + C = ln|secx + tanx| + C
2024-10-28 广告
微分中dx 与△x区别:含义不同,使用不同。
一、含义不同:
△X增量,dX是变量,前者是宏观的,后者才是微分术语。如果此处的x是自变量,dx=△x,通常把自变量x的增量△x称为自变量的微分,记作dx;如果这里的x是因变量,那么把自变量写作y的话,△x是变化量,dx=导数*△y。
二、使用不同:
dx是x的微分,Δx是x的改变量。一般两者不等。前者是后者的线性主部。但对自变量而言,因为x对x的导数恒等于1,两者相等。反之,两者相等的也只有自变量。
定义
设函数y = f(x)在x的邻域内有定义,x及x + Δx在此区间内。如果函数的增量Δy = f(x + Δx) - f(x)可表示为 Δy = AΔx + o(Δx)(其中A是不随Δx改变的常量,但A可以随x改变),而o(Δx)是比Δx高阶的无穷小,那么称函数f(x)在点x是可微的,且AΔx称作函数在点x相应于因变量增量Δy的微分,记作dy,即dy = AΔx。
函数的微分是函数增量的主要部分,且是Δx的线性函数,故说函数的微分是函数增量的线性主部(△x→0)。
即:Δx=dx+o(dx), 其中o(dx)是比dx高阶的无穷少,
这一项非常小故可以忽略,dx≈Δx
很高兴能回答您的提问,您不用添加任何财富,只要及时采纳就是对我们最好的回报
。若提问人还有任何不懂的地方可随时追问,我会尽量解答,祝您学业进步,谢谢。
☆⌒_⌒☆ 如果问题解决后,请点击下面的“选为满意答案”