高等数学求极限,2,12怎么做?
展开全部
2.12 f(x) 即为分段函数:
f(x) = x^2 x > 1;
f(x) = (1/2)(1+a+b) x = 1 ;
f(x) = ax+b x < 1 .
函数要连续,则
(1/2)(1+a+b) = 1, (1/2)(1+a+b) = a+b
得 a+b = 1
f(x) = x^2 x > 1;
f(x) = (1/2)(1+a+b) x = 1 ;
f(x) = ax+b x < 1 .
函数要连续,则
(1/2)(1+a+b) = 1, (1/2)(1+a+b) = a+b
得 a+b = 1
追问
能问下你分段函数怎么求的吗?我就是这个不懂
追答
因有 e^[n(x-1)] 项, 分 x > 1, x = 1, x 1 时,lime^[n(x-1)] = + ∞,
分子分母同乘以 e^[-n(x-1)], 则 lime^[-n(x-1)] = 0,
f(x) = lim{x^2 + (ax+b)e^[-n(x-1)]}/{e^[-n(x-1)]+1} = x^2;
当 x = 1 时, f(x) = lim(1+a+b)/2 = (1/2)(1+a+b);
当 x e^[n(x-1)] = 0,
f(x) = lim{x^2e^[n(x-1)] + ax+b}/{1+e^[n(x-1)]} = ax+b.
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询