
求证cosx/(1- sinx)^2=1
2个回答
展开全部
cosx/(1- sinx)^2=1
<==>cosx=(1- sinx)^2,
令x=π/4,得1/√2=(1-1/√2)^2=3/2-√2,
3√2=3,矛盾,命题不成立。
<==>cosx=(1- sinx)^2,
令x=π/4,得1/√2=(1-1/√2)^2=3/2-√2,
3√2=3,矛盾,命题不成立。
本回答被网友采纳
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
展开全部
Let Im,n=∫(sinx)^m*(cosx)^ndx
then Im,n=(sinx)^(m+1)*(cosx)^(n-1)-
∫(sinx)[(sinx)^m*(cosx)^(n-1)]'dx
=(sinx)^(m+1)*(cosx)^(n-1)-
∫[m(sinx)^m*(cosx)^n-(n-1)(sinx)^(m+2)*(cosx)^(n-1)]dx
=(sinx)^(m+1)*(cosx)^(n-1)-mIm,n+(n-1)Im+2,n-2
so (m+1)Im,n=(sinx)^(m+1)*(cosx)^(n-1)+(n-1)Im+2,n-2
用此递推公式求解
sin(ax)*cos(bx)
=(1/2)*[sin(a+b)x+sin(a-b)x]
so ∫sin(ax)*cos(bx)dx
=-(1/2)*[cos(a+b)x/(a+b)+cos(a-b)x/(a-b)]+C
then Im,n=(sinx)^(m+1)*(cosx)^(n-1)-
∫(sinx)[(sinx)^m*(cosx)^(n-1)]'dx
=(sinx)^(m+1)*(cosx)^(n-1)-
∫[m(sinx)^m*(cosx)^n-(n-1)(sinx)^(m+2)*(cosx)^(n-1)]dx
=(sinx)^(m+1)*(cosx)^(n-1)-mIm,n+(n-1)Im+2,n-2
so (m+1)Im,n=(sinx)^(m+1)*(cosx)^(n-1)+(n-1)Im+2,n-2
用此递推公式求解
sin(ax)*cos(bx)
=(1/2)*[sin(a+b)x+sin(a-b)x]
so ∫sin(ax)*cos(bx)dx
=-(1/2)*[cos(a+b)x/(a+b)+cos(a-b)x/(a-b)]+C
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询