函数展开成幂级数的题,求解
3个回答
展开全部
f(x) = 1/[(1-x)(2-x)] = 1/(1-x) - 1/(2-x) = 1/[2-(x+1)] - 1/{3-(x+1)]
= (1/2)/[1-(x+1)/2] - (1/3)/[1-(x+1)/3]
= ∑<n=0, ∞> {(1/2)[(x+1)/2]^n - (1/3)[(x+1)/3]^n}
= ∑<n=0, ∞> [1/2^(n+1) - 1/3^(n+1)](x+1)^n
收敛域 -1 < (x+1)/2 < 1, -1 < (x+1)/3 < 1, 得 -3 < x < 1
= (1/2)/[1-(x+1)/2] - (1/3)/[1-(x+1)/3]
= ∑<n=0, ∞> {(1/2)[(x+1)/2]^n - (1/3)[(x+1)/3]^n}
= ∑<n=0, ∞> [1/2^(n+1) - 1/3^(n+1)](x+1)^n
收敛域 -1 < (x+1)/2 < 1, -1 < (x+1)/3 < 1, 得 -3 < x < 1
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询