怎样证明收敛数列一定单调有界?

 我来答
鲨鱼星小游戏
高粉答主

2023-06-28 · 最爱分享有趣的游戏日常!
鲨鱼星小游戏
采纳数:2712 获赞数:238304

向TA提问 私信TA
展开全部

证明数列单调有界即可,有界证明用极限存在定理。

如果数列{Xn},如果存在常数a,对于任意给定的正数q,总存在正整数N,使得n>N时,不等式|Xn-a|<q都成立,就称数列{Xn}收敛于a(极限为a),即数列{Xn}为收敛数列。

证明数列收敛通常是落实到定义上或者证明数列的极限是固定值。比如数列an=a0+1/n,随着n增大,lim(an)=a0,因此可证明数列{an}是收敛的。

相互关系

收敛数列与其子数列间的关系

子数列也是收敛数列且极限为a恒有|Xn|<M

若已知一个子数列发散,或有两个子数列收敛于不同的极限值,可断定原数列是发散的。

如果数列{

}收敛于a,那么它的任一子数列也收敛于a。

推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式