如图,点M为正方形ABCD的边AB延长线上任意一点,MN⊥DM且与角ABC的外角交与点N,此时MD与MN有何数量关系?

eng_chang
2008-11-14 · TA获得超过1.4万个赞
知道大有可为答主
回答量:1089
采纳率:0%
帮助的人:0
展开全部
MD=MN

延长AD至E,使DE=BM,连接EM,记点F在BM的延长线上
因为 在正方形ABCD中 AD=AB,角A=角CBA=90度
所以 AD+DE=AB+BM,即AE=AM
因为 角A=90度
所以 角E=45度
因为 BN是角ABC的外角平分线,角CBA=90度
所以 角NBM=45度
所以 角E=角NBM
因为 角A=90度
所以 角MDA+角DMA=90度
因为 MN垂直DM
所以 角NMF+角DMA=90度
所以 角MDA=角NMF
所以 角MDE=角NMB
因为 角E=角NBM,DE=BM
所以 三角形MDE全等于三角形NMB
所以 MD=MN
q277230400
2008-11-14
知道答主
回答量:12
采纳率:0%
帮助的人:0
展开全部
图呢?
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
收起 1条折叠回答
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式