基本不等式公式

 我来答
沈千絮
2023-06-27 · 超过677用户采纳过TA的回答
知道小有建树答主
回答量:1333
采纳率:100%
帮助的人:18.7万
展开全部

基本不等式公式:

1、加减不等式:若a<b,则a+c*b+c(其中c为任意实数),同理,若a>b,则a+c>b+c。

2、乘法不等式:若a,b,c>0(或c<0),则ac<bc(或ac>bc);

若a<b,c>0(或c>0),则ac>bc(或ac<bc)。

3、平方不等式:若a是任意实数,则有a^2≥0;

对于任意实数a和b,有(a+b)^2≥0,即a^2+2ab+b^2≥0;

对于任意实数a和正实数b,有a^2+b^2≥2ab,即(a-b)^2≥0。

4、倒数不等式:若a,b,c都是正实数,则有1/a1/b,若a>b>0,则1/a<1/b<1/c。

5、绝对值不等式:对于任意实数a和b,有|a+b|≤|a|+|b|,即两实数的绝对值之和不大于它们的各自绝对值之和。

这些基本公式是解决不等式问题的基础。在实际应用中,可以根据不同情况和需要,灵活应用这些公式。

知识拓展:

基本不等式应用:

一、应用基本不等式解题一定要注意应用的前提:“一正”“二定”“三相等”。所谓“一正”是指正数,“二定”是指应用基本不等式求最值时,和或积为定值,“三相等”是指满足等号成立的条件。

二、在利用基本不等式求最值时,要根据式子的特征灵活变形,配凑出积、和为常数的形式,然后再利用基本不等式。

三、条件最值的求解通常有两种方法:

1、消元法,即根据条件建立两个量之间的函数关系,然后代入代数式转化为函数的最值求解;

2、将条件灵活变形,利用常数“1”代换的方法构造和或积为常数的式子,然后利用基本不等式求解最值。


推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式